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Reactive Manifesto

Is a pattern for building software capable of handling 
today's application requirements:

● Highly responsive to user,
● Large amounts of data,
● Grow and adapt to change

Sounds like it could also apply to the front-end.....
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Reactive Analogue

      Server Cluster

● Responsive

● Elastic

● Resilient

● Message Driven

Web Page

● Responsive

● Consistently Fast UI?

● Less bugs in SDLC?

● Rethink Event Bindings?

Aggregate     →    Single



  

“Elastic” Browser Performance

Today websites handle more data, 
with rich interactions, all within a single page.

Each page requires:
● more JS libraries,
● larger downloads,
● data-binding,
● dynamic DOM.

Leading to too-many, bizarre, frameworks.



  

Exponential Problem

Today's frameworks bend around browser limitations

They work...
for small data sets or a limited number of instances.

AngularJS Dirty Checking



  

New JavaScript Features that Scale

Native Browser support
(No download, No JavaScript engine)

– DOM Mutation Observers

– JavaScript Object observers

– <template>

Multi-threading
– Web workers: Separate computations and UI

– async loading and parsing



  

“Resilient” Webpages

Fewer errors by simplifying code
● HTML is the final product,
● Impedance mismatch of complex frameworks.

Increase composibility, reusability of components
● Dev teams work more efficiently,
● Less work required,
● More cohesive design.



  

Slimmer Frameworks, Expand HTML

Native support for Custom HTML tags 
● Familiar, reusable components,
● No external dependencies,
● Built using HTML DOM in a <template>.

Replaces frameworks' abstractions:
● None are framework agnostic,
● Rely on string, JSON or non-HTML templates.



  

Shadow DOM

Enforces proper scoping,
● Segregate HTML along bounded contexts,

– Encapsulation of internals,

– Guard against external CSS, Id naming conflicts,

– Restrict interactions to messages.

Ensures Loose-coupling, Reusability

Can be pierced unlike an iframe when necessary



  

Web Components

Native Browser Support
(polyfilled if not yet supported)

● Custom HTML Elements
● <template>

● Shadow DOM
● Object.observe

● HTML Imports



  

Polymer

Native browser implementations are low-level and 
un-opinionated, Polymer is the first library to put it 
all together.

Still pre-release, version 1.0 scheduled for Q2

Already used in production at:
Salesforce, News Corp,  GitHub, YouTube, Google

(active development at Google)
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FE Reactive System Strategy

Responsive

Resilient

Message Driven

Elastic

Responsive

Directed Event 
Bindings?
(Message Driven)

Native Support
(elastic)

Expanded HTML
(Resilient)



  

Message vs. Event System

● Difference very small in a FE context

● Ideal system:
– Message-oriented middleware,

– Event-driven components,

– Non-blocking execution.

Message-driven: focus on recipients,

Event-driven: focus on sources.



  

Message Delivery via 2-Way Bindings

<h1>Welcome back {{account.name}}!</h1>

<song-search
   genres="{{account.genres}}"
   results="{{playlist}}">
</song-search>

<media-player playlist="{{playlist}}">
</media-player>

<div class="footer">
   <account-profile account="{{account}}">
   </account-profile>
</div>



  

observe

Polymer expressions and filters can be used to 
transform and combine data outside of components:

● Data references act as middleware,
● Location transparency,
● Components do not require knowledge of 

external events, maintaining loose coupling.

{{ a + b | base16 }}

{{ myNumbers | gt(3) | sort }}



  

Object.observe(), Array.observe()

Events when:
● the value of a data property is updated,
● any property is added,
● any property is deleted,
● any property is reconfigured.

No expensive dirty-checking, no special methods.

Plain Old JavaScript Objects.



  

High level observe libraries

observe.js
● PathObserver, ArrayObserver, ObjectObserver, 

CompoundObserver, ObserverTransform

watchtower.js
● Angular 2.0's change detection
● Undocumented, more complex

Both can Polyfill with dirty-checking



  

Reactive Analogue

      Server Cluster

● Responsive

● Elastic

● Resilient

● Message Driven

Web Page

● Responsive

● Native Support,
Multi-threaded

● Loose Coupling, 
Encapsulation

● Event Driven Messages

Aggregate     →    Single



  

Strategies for a Reactive FE

      Server Cluster

● Responsive

● Elastic

● Resilient

● Message Driven

Web Page

● Responsive

● Native Support,
Web Workers

● Shadow DOM,
Custom Elements

● Object.observe

Aggregate     →    Single



  

Web Component Resources

● polymer-project.org

● HTML5Rocks.com

● customelements.io

● component.kitchen

● W3C Web Components wiki

● YouTube:

- Chrome Dev Summit, Google I/O, JSConf

http://polymer-project.org/
http://html5rocks.com/
http://customelements.io/
http://component.kitchen/
http://www.w3.org/wiki/WebComponents/


  

Thanks for Listening!

Questions ?

https://github.com/stevenrskelton
– Various Polymer web components

Blog: http://stevenskelton.ca

https://github.com/stevenrskelton

