

Reactive Programming Toronto
December 3, 2014

Web Components
Reactive Architecture for the Front End

Steven Skelton

Reactive Manifesto

Is a pattern for building software capable of handling
today's application requirements:

● Highly responsive to user,
● Large amounts of data,
● Grow and adapt to change

Sounds like it could also apply to the front-end.....

Reactive System Strategy

Responsive

Resilient

Message Driven

Elastic

Responsive

Message Driven

Elastic Resilient

Reactive Analogue

 Server Cluster

● Responsive

● Elastic

● Resilient

● Message Driven

Web Page

● Responsive

● Consistently Fast UI?

● Less bugs in SDLC?

● Rethink Event Bindings?

Aggregate → Single

“Elastic” Browser Performance

Today websites handle more data,
with rich interactions, all within a single page.

Each page requires:
● more JS libraries,
● larger downloads,
● data-binding,
● dynamic DOM.

Leading to too-many, bizarre, frameworks.

Exponential Problem

Today's frameworks bend around browser limitations

They work...
for small data sets or a limited number of instances.

AngularJS Dirty Checking

New JavaScript Features that Scale

Native Browser support
(No download, No JavaScript engine)

– DOM Mutation Observers

– JavaScript Object observers

– <template>

Multi-threading
– Web workers: Separate computations and UI

– async loading and parsing

“Resilient” Webpages

Fewer errors by simplifying code
● HTML is the final product,
● Impedance mismatch of complex frameworks.

Increase composibility, reusability of components
● Dev teams work more efficiently,
● Less work required,
● More cohesive design.

Slimmer Frameworks, Expand HTML

Native support for Custom HTML tags
● Familiar, reusable components,
● No external dependencies,
● Built using HTML DOM in a <template>.

Replaces frameworks' abstractions:
● None are framework agnostic,
● Rely on string, JSON or non-HTML templates.

Shadow DOM

Enforces proper scoping,
● Segregate HTML along bounded contexts,

– Encapsulation of internals,

– Guard against external CSS, Id naming conflicts,

– Restrict interactions to messages.

Ensures Loose-coupling, Reusability

Can be pierced unlike an iframe when necessary

Web Components

Native Browser Support
(polyfilled if not yet supported)

● Custom HTML Elements
● <template>

● Shadow DOM
● Object.observe

● HTML Imports

Polymer

Native browser implementations are low-level and
un-opinionated, Polymer is the first library to put it
all together.

Still pre-release, version 1.0 scheduled for Q2

Already used in production at:
Salesforce, News Corp, GitHub, YouTube, Google

(active development at Google)

BE Reactive System Strategy

Responsive

Resilient

Message Driven

Elastic

Responsive

Message Driven

Elastic Resilient

FE Reactive System Strategy

Responsive

Resilient

Message Driven

Elastic

Responsive

Directed Event
Bindings?
(Message Driven)

Native Support
(elastic)

Expanded HTML
(Resilient)

Message vs. Event System

● Difference very small in a FE context

● Ideal system:
– Message-oriented middleware,

– Event-driven components,

– Non-blocking execution.

Message-driven: focus on recipients,

Event-driven: focus on sources.

Message Delivery via 2-Way Bindings

<h1>Welcome back {{account.name}}!</h1>

<song-search
 genres="{{account.genres}}"
 results="{{playlist}}">
</song-search>

<media-player playlist="{{playlist}}">
</media-player>

<div class="footer">
 <account-profile account="{{account}}">
 </account-profile>
</div>

observe

Polymer expressions and filters can be used to
transform and combine data outside of components:

● Data references act as middleware,
● Location transparency,
● Components do not require knowledge of

external events, maintaining loose coupling.

{{ a + b | base16 }}

{{ myNumbers | gt(3) | sort }}

Object.observe(), Array.observe()

Events when:
● the value of a data property is updated,
● any property is added,
● any property is deleted,
● any property is reconfigured.

No expensive dirty-checking, no special methods.

Plain Old JavaScript Objects.

High level observe libraries

observe.js
● PathObserver, ArrayObserver, ObjectObserver,

CompoundObserver, ObserverTransform

watchtower.js
● Angular 2.0's change detection
● Undocumented, more complex

Both can Polyfill with dirty-checking

Reactive Analogue

 Server Cluster

● Responsive

● Elastic

● Resilient

● Message Driven

Web Page

● Responsive

● Native Support,
Multi-threaded

● Loose Coupling,
Encapsulation

● Event Driven Messages

Aggregate → Single

Strategies for a Reactive FE

 Server Cluster

● Responsive

● Elastic

● Resilient

● Message Driven

Web Page

● Responsive

● Native Support,
Web Workers

● Shadow DOM,
Custom Elements

● Object.observe

Aggregate → Single

Web Component Resources

● polymer-project.org

● HTML5Rocks.com

● customelements.io

● component.kitchen

● W3C Web Components wiki

● YouTube:

- Chrome Dev Summit, Google I/O, JSConf

http://polymer-project.org/
http://html5rocks.com/
http://customelements.io/
http://component.kitchen/
http://www.w3.org/wiki/WebComponents/

Thanks for Listening!

Questions ?

https://github.com/stevenrskelton
– Various Polymer web components

Blog: http://stevenskelton.ca

https://github.com/stevenrskelton

